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LINEAR SUFFICIENCY AND SOME APPLICATIONS
IN MULTILINEAR ESTIMATION

by
Hilmar Drygas

|Ta
* Summary
In theAlinear model Y-X\B +u the question arises when a
linear transformation z =Ly contains all information of the linear

model. This problem was solveqnpg>pgg§g}gry and Kalfj(Annals

rnrapns et O

1981),<Brygas/z§;nkhyi,<};f{£edming).snd J. Miiller, (Ph.D. thesis,
Kassel 1982);)As an application we consider the estimation of the
variance of the observations, its skewness and its kurtosis.

This is done by considering so-called derived models., (Anscombe,

Pukelsheim, Kleffe).” Linear sufficient statistics are derived

for these problems.

\
\

Key words and phrases: Linear models, tensor-products, symmetric
tensors, variance, skewness, kurtosis,
multilinear estimation, linearly sufficient
statistics.
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* LINEAR SUFFICIENCY AND SOME APPLICATIONS
IN MULTILINEAR ESTIMATION

Hilmar Drygas

l. Linearly sufficient statistics in linear models

The concept of linear sufficiency goes back to work by Baksa-
lary and Kala (2], Drygas (6] and J. Miiller [11]. Since it is
needed in a coordinate- free form we will give it here in this
form. As usual a linear model is described by a statistical
field (9, F, P) and a random H-valued vector yln an inner-

product space, such that

(1.1) EpyGL VPeP

(1.2) Covpyc @PvPrer

This setup is also called the model M(L, ® ). L will in general
be a linear manifold and ® a cone of n.n.d. matrices (or oper-
ators). In this paper we will only be concerned with the case
@- {02Q: 0230}.

If the model M(L, ® ) is given then a linear inhomogeneous
transformation d + Gy, G a linear l.upp:l.ng from H to H, is called
BLUR (Best linear unbiased estimator) of Ey if it is unbiased and
has smallest covariance-matrix (covariance-operator) in the class

of all linear unbiased estimator of Ey. d+ Gy is BLUE of Ey iff

(1) d = (I-G)1 ¥ 1 ¢L, (11) Gf=f ¥ £ ¢F = L-L and
(111) GQx = O ¥ x ¢ F* AVQC@.




e T2 n T R N Y e A R A e L AT T e e e e e S T PEIACIA RO RO SCINCERCI

s P

f. 2
4
: A BLUE must not exist, but it .exists in the case H = {02Q; 0230}
since F n QF! = {0}. (See e.g., Drygas [51).
‘: 1.1 Definition: Let Aoy = ¢ + Ay. Then Ao,‘, is called 1ihearly.
Y -
K-, sufficient if there is a BLUE of Ey which is a linear function
" Of A y.
? 0
\': 1.2 Theorem: A,y is linearly sufficient if and only if F cim(W4"),
o where W.=Q + cPp is such that ¢ >0 and Fc im (W). (Pp is the ortho-
. *
L gonal projection onto F, A is the adjoint mapping of A).
3 '
I;: Proof: 1. First assume that F ¢ in ('A*). We consider the equation
" BAPF = PF. We claim that this equation possesses a solution.
;.:f This euqation is equivalent to PF = PFA*B* or Fc in (PFA*)
™ which again is equivalent to (A PF)']‘ (0) cF*. Therefore let
< -
APpX = 0, then Px = W A'b for some b and A Px= AWA'D = 0,
" implying W A*b = Prx = Q.
2, .
f:ﬁ_ Now let Hz be a BLUE of Ez in the model M(AF, AQA‘). Then
for le¢L
(1.3) (I-BHA) 1+BAy
bic = (I-BHA) 1+BGHc + BHAy
= :
is BLUE of Ey, if BAPF = PF. Indeed, if 1l ¢L and y-Qw,welF‘L,

then AQw= AVWw = AwA' v for some v. Since Fc in (IA*) is

equivalent to (Al)'l.(O) Ft, AW(w-A"v) = 0 implies w-A've Ft,

n

i.e., A'veF* or veA*™ 1(F') = (AF)*. Thus HAW A'v=0. Thus
(1.4) (1-BHA)L-Ghc + GHA(1 + QW)
= ] ,

proving the BLUE-property.
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2. Let G_A y+d be BLUE of Ey in M(L, {Q}). Then
(1.5) GoAf =1 ¥ 1¢F = L-L, GAQF" = 0.

We show (AW)']' (0) ¢ F! which is equivalent to Fcin (WA*). Let
AWt = O, where Wi: =Qa+f, a ¢ FJ', fe¢F. Then GOAWt= 0=1¢f im-
pPlying Wt = Qa = Wa,(t-a) ¢ W-I(O) c Ft (since F ¢ im W). Thus
t =a+ (t-a) eF’,

Q.E.D.

1.3 Definition: Let z = Aoy be linearly sufficient. Then 2 is
called linearly minimal sufficient if for any z, = Aly which is
linearly sufficient, there exists a Bl such that z = Blz1 al-

most surely mod P.

1.4 Theorem: 2z = Aoy Sc+Ay is .linearly minimal sufficient if
and only if

(1.5) F = im(WA")
The proof goes along the lines of a similar proof in Drygas

(6].

2, Computation of expectation and covariance for multilinear
expressions :

In this paragraph we are assuming that €1+€9s+ 0. ,€, are

independent (at least up to a required order concerning the com-

putation of moments) random variables with expectation zero and

existing moments up to some required order. The moments E(et) are

''''''''
.....
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assumed to be equal for all i. Thus el,...;en behave - at least
what the moments up to a certain order is concerned - as inde-

pendently identically distributed random variables.

Let € = (el,...,en)' and A be a symmetric nxn-matrix. Then
(2.1) E(e'Ae)= E(tr (A ec')) = E(tr (A 02 1))
2

= ¢ traA.

The computation of E(c¢' Ae)2 or Var(c' Ae) is tedious but it’is
usually considered as'elementary and straightforward". However,
in the last years attempts have been made to make such computa-
tions more efficient. We mention in this context mainly the paper
by J. Kleffe [10) who has elaborated an approach originally
adapted by Balestra [3] and Neudecker [12].

Let A = (a i,j=1,2,...,n). Then for computing E(e'A t-:)2

i3’
evidently

(2.2) E(( a,.€.€.) ( €,€4)) =
12’1 13%1%3 kz’l‘kl k&1

1,§,k’1 848y E(ejeyepe,)

is needed. Since (aijakl) = A @ A, where # denotes the Kronecker-
product A @ B = (aiJB), evidently

(2.3) E(c'Ac)? = tr((ARA) E(cc' ® ec')).

This formula has been obtained by Balestra (31, Neudecker ([12] and
Kleffe [10] via a different technique. However, the formula (2.3)

does not yet help very much. Let us therefore rewrite (2.2), (2.3)
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5

in the form

' 2
(2.3a) E(e Ae)® = g“jaij(kglakl E(eyeqi€4€4)).

If we denote the nxn -matrix E(ekelee') = E(ekelsiej) by wkl’ then
evidently

(2.4) E(e'Ae)? = tr(a - kzlakl Vyep)-

This is the formula obtained by Kleffe [10]. If k=1, then by

4 4
independence ¥, ; = V), = E(ejley, + 0 Zke66 by if we denote the
matrix e 93 - ey the i-th unit-vector in R" - by €5 Let
E(ei) = 8 g . Then

(2.5) Ve = OHB-1) ey + T eggd =o(B-Deyy + 1)

is obtained. Similarly we get for k # 1, that by independence

(2.8) = cte., + e

L4%1 k1 ¥ k)

Finally by symmetry of A

4 n .
(2.7) a, ¥ . = 0 {( a..)(I )+)(B-1)a, , € +2 a, e .}
kz,l k1'kl kzgl kk’‘ “n 1); kk kk szl k1l k1l

= ci{(tra) I_+(8-3) diag A + 24},

n .
where tr A= § a, ., and diag A is the diagonal matrix with the
k=1
same diagonal-matrix as A. Since (tr A)2= tr((tr A)I - A),

evidently
(2.8) (Cov ec') A=2A + (B-3) diag A,

as is well-known (Hsu (8], Drygas [4]).
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fﬁ. The method developed by Kleffe can readily be extended to
(4]
3 the computation of variances for p-fold Kronecker-products. We
) P .
- consider the R® as the set of collection of real numbers ‘
:3’ (ail;...,ip,il""’ip==1""’°) which are lexikographically |
::: ordered. An element a = (a; 4 ) will also be called a p-fold
2 1'°°°"p
) n . @p-1

tensor. If belR, then b @ P = : (b ) 8 b is evidently a ]
? P |
i p-fold tensor with elements b1 i = bi by ...b; . In R" |
4 1 g e T ey p 1 2 -t ._p

we introduce the usual inner product

n

(2.9) <a,b> = a i b 4 -
_:; 11,...ip=1 .- p .- p
?: A tensor a = (a ) is called symmetric, if
e 11’ .« e ,ip
- (2.10) a _—
r‘:: “(il)..l."(ip) il.‘.ip
'ﬁ for any permutation n’esp. Evidently bﬁp is a symmetric tensor.
. The projection on the set of symmetric matrices is given by the
]
’@ symmetrizer LK
-

CRISIENCA N FIITINNLE- B S WO
| 1" 7p P mes, 1T {2g).- T3y
*J
Y We consider eﬁa and 594 . Evidently
4 n

(2.12) E<a,e®> = (] a0 Ed)

i=1

- Similarly, if a is symmetric
\’
A 84

(2.13) E(<a,e" >) = § a E(e,e,e.€.) =
- ' 1,3,k,1 ijkl i"jk"1
<
7 4 4
0T(B-3) ] ayyyy* 30 1 By
: i i,

where again E(e:) = 804. Since <a,e°4> = <a,Tg e‘n>'-<e°4,nsa>
o, .
3 the restriction to symmetric a is not essential. We will come
‘ﬁ back to this at the end of the paragraph.

a3

L What the computation of the covariance-operator of ¢ and

............................................

.........
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€ is concerned it is hardly possible to get simple expressions
without additional assumptions. Therefore we will assume in the
sequel that € is quasi-normally distributed, i.e., that the mo-
ments up to order 6 and 8, respectively, coincide with the normal
moments. This means that for p=3 we assume.that E(ef‘) = E(ef) =

30t E(e16)= E(e16)= 15 o°

8

and for p =4 additionally E(eis) -

105 ¢ is assumed to hold. To compute E(<a,eep>2)evident1y

n
a

p

(2.14)

€ € v e € € PP S
1g...4 %3005 1,51 1 €3,

a
11{""ip’31""’3p=1

has to be computed. This may also be written as <a,Va>, where
V is some operator. Evidently (2.14) is eqﬁal to

n
(2.15) )

. 3 (1 ay g ECe €5 ))

a ® o o e
=] 1 Jyeeodniyyenn,
1...ip;; 1 o] 31...jp P 1 P 1l P
implying that

(2.16) Va = a ¥ ;
L Ipe--dp Vapeeedy

where wjl"'J = E(e

b J]_..-ej

p

We will compute Va for p=3 via formula (2.16) and for p=4

by just computing E(eJ ...eJ €y ...ei ). This will allow'a com-
1

p 1 P
parison of the two methods.

To do the computations for p =3 evidently waBY , wuaB and
'4 ~
waaa ‘a # B ¥ Y) have to be considered. Ve denote by €aBY the
tensor having a 1 at place (a,B,Y) and Zero elsewhere. Let,

n

moreover, I_ = J a

-~ 14 .
8 L 8. ap" Tr n we get* for symmetric a:

. .
vl
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(2.17)

Vogy = n§s3e"<°‘)"(3)“”) = 6Tsepy

.6 6
(2.18) Vg4 = 309 eggg * O Gfg ol 88" Sss* %spe)

6 _ 6 .6
+30 (eaaB+eaBa+eBaa)'3° "SIB+ 10 "SeaaB'

_ 6 6 .
(2.19) waaa =159 eaaa+3 o 872‘01( eBBa+eaBB+eBa8)
= 6 6
=60 eaaa + 990 "SIa'
Finally L
= 40 ;
(2.20) Va a g YaaBYwaBY-o {GafgfdaaBGeuBG

6
+9 2 ( 2 a’aaB) "SIB'.'6 o 2 aaaB( eaa8+ea8a+e6aa)

B o#B a¥p
+ 6 g aaaaeaau +9 g("sla)aaaa}
6
L) 248v%a8y * ° azeaaaB"SIB}
o,B,Y ’

6, S
= g {6a + 9 J (trg a)rglgl,

=1
n
where tr,a= az-l 8,,8- Evidently also
6 n
(2.21) Va = ¢°{6a+ 9 stl("SIB o mgI},

where a ob denotes the outer product defined by (a ob)c =<b,c>a.
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This follows from <a,nSIB> = trBa, if a is symmetric. It is also .

true, that
n |
(2.22) g;éjslec)ﬂsIB) =mg(I, @ vec(I )(vec I )) Img,

the representation found by Pukelsheim in [14]. This representa-
tion will not be used in this paper.

We now assert, that for symmetric a = (aijkl)

n
24 -
(2.23) E(<a,e >7) = aijklarstuE(eiejekelsreseteu)

i,j,k,1,r,s,t,u=1

2i1jk?jk11

=]
N
-l e ] =]

,1=1

seteu) vanishes if
some € appears an uneven number of times. Therefore only the

8 6 2 4 4 4 2 2 2.2 22
cases €,, €, ej, €5 ej, €y ej €k ierkel
considered. 1If all indices i,j,k,1 are different from each other

Indeed, under quasi-normality, E(eiejekelere

€ and € are to be
then surely the sums reported in (2.23) will appear. The factor
24, 72 and 9 arise from careful combinatorial considerations and
the fact that a is symmetric. Note that some combinations are
covered by the summation. If i=j=k=1, then the subsum in

(2.22) is equal to

n n
8 2 _ 2 8
(2.24) 105 ¢ Ezlaiiii = Eilaiiii E(ei).

Now consider the 6 cases i=j, i=k, i=1, j=k, j=1 and k=1.

Then by symmetry the corresponding subsum in (2.23) is equal to
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‘ -
(2.25) o {18 zaiiiiajjkk'+288 zaiiijaijkk
2
+ 216 Zaiijk-+108 z aiijjaiikk}
=3 08{6 Ia a +96 Ia a
iiii"jjkk iiij%ijkk
+ 72 zaiijkaiijk + 36 zaiijjaiikk}
In view of E(eg) = 3 04 and symmetry this is just the set of all
- possible summands occurring with factor E(eis?ei). Again care-
Eﬁ ful considerations are necessary to establish the combinatorial
?f numbers6,96,72 and 36. Finally we get for the seven cases
? i=j=k; i=j=1; i=k=1; j=k=1;.i=j, k=1; i=k, j=1 and

- i=j, k=1 as subsum of (2.23)

2

+ 240 Eaiiij

8
(2.26) 6°{180 zaiiiiaiijj

2

+ 9 Ia 1133

+ 144 ta + 162 Za }

111i%3333 1113%1333

8 2

= 150 iiij}

112 Za + 16 Ia

i11i®1433

2

8
+ 90 {Za 11152153 + 18 zaiijj}'

iiiiajjjj + 16 Za

In view of E(efs) = 1506, E(ét)='3o4 the first sum belongs due
to symmetry of a to all terms where E(e?e?) appear. The second
sum belongs to all terms where E(e?e?) occurs. Again, careful
reasoning is necessary to determine the combinatorial factor 12,
16, 1, 16 and 18.

Since the last term in (2.22) is evidently equal to

908(2a -[E(<a,eﬂ4>)]2 it follows that for symmetric a:

2
1133’




24

2

8
(2.27) Var(<a,e >) = 0 {24 zaijk1+ 72 zaiijkajkll}

Define the tensor e ,. ., which has unity at place (o,B8,Y,8) and

ag¥s n n
zero elsewhere. Let Ijk = g;lejkaa and trj'ka -aglajkaa Then
evidently
24 8 L
(2.28) Var(<a,e >)=0{<a,24a + 72 ] (tr_ a)r I . >}.
jh=13E*Ts gk

This shows that for symmetric a evidently

n
) = oS24 1 +72 )
J,k=1

(2.29) cov(c®? (mglp 0 mgI )

where @ ob) again denotes the outer product: (aob)c =<b,c>a.

(2.28) can also be written as
8 ' !
(2.30) o°{241+ 72{175(1n ] In ﬂ.(vec In) (vec In) 2 (vec In) (vec In) ws}

the representation given in Pukelsheim [14). This representation
will not be used here.

A final remark of this paragraph concerns the covariance-
opeartor (2.28). This formula is only correct if it is really
considered as a covariance-operator, restricted to the symmetric
tensors. It is not identical with the covariance-matrix. Let

ﬂ2(eﬂ2 !

us assume we have computed the covariance-matrix E(e ) ) =¢C.
From (2.4)-(2.6) we get in the quasi-normal case Ca = 04{(aij) +

(ag) + (tr a)I }. Since in general vec(bb') = b @ b it follows
that E(e’4) = vec(E(e'z(eﬁz)') = vec(C). Denote by eiJ the

2
vector in R" having 1 at place in+j and zero elsewhere, then

it is easily checked that vec(C) is different from 304

(ell"‘eln"'enl"'enn)’ but equality is obtained when the two



¥

12

':' matrices are applied to symmetric tensors. In so far the assertion
in Pukelsheim ([14] claiming that (2.29) is the covariance-matrix
o is wrong.

5%

_, 3. Linear sufficient statistics in multilinear estimation

We consider the linear model EyeLc R" , Covy= 02 In as

- described in section 1 of this paper. Let F = L-L and PFy de-
note the orthogonal projection of y onto F. Then Goy = ] +PF(y-1),
1eL is the unique BLUE of Ey. We consider

l- _1

3 (3.1) u.= o “(y-Ey), z = (I-Pp)(y-1) = o(I-Pg)u.

X The quantity

(3.2) V =2z’ = (I-Pp)(y-1)(y-1) ' (I-Pp) = 02(I-Pp)uu’ (I-P)

3

7 is a random element with values in the set H of all symmetric

) nxn-matrices A satisfying Af=0 ¥ fcF. Let M = (I-PF), then
AcH iff MAM = A (Drygas [4]1). In H the inner product

2 <A,B> = tr(AB) is used. Since <zz',A> = o2(u'Au) and by (2.1),
U N

g (2.8)

; (3.3) - E(u Au) = tr(A) = tr(MA)

s

! (3.4) Var(u'Au) = tr([2A + (B-3) diag Al-A)

~ = tr([2A + (8-3) M+ diag A-M)A),

-~
»
.
)
L]
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we get that V =zz follows the linear model

2

(3.5) EV= 0°M, CovV= o%{2A+ (8-3)M diag AM},

if considered as H-valued random element.

Besides the mapping Diag A = (ai:jdi:j) which is evidently

self-adjoint we monsider the linear mapping diag: R® + Rnxn
defined by diag (xl,...,xu)' = (8;5%;). Evidently the adjoint is
diag*(aij) = (an,...,ann)'. If A and B are two nxn-matrices

then the Hadamard-product A *B is defined by (A*B) = (ai:jbij)'

3.1 Theorem: Let M#0. Then tr(MV) = tr(V) is a linearly suf-
ficient statistic in the model (3.5) iff the Hsu-condition '
o1(B-3)(M *M) m=pm, where p = (B-3)c? tr(M #M)/(tr M) is met.

In this case tr(MV) = tr V is also linearly minimal sufficient.

Proof: Consider the linear mapping AV = tr(MV). This is a map-
ping from H to IR. The adjoint mapping of this mapping is
A*A= AM, ) ¢R. A is linearly sufficient iff

(3.6) {AM} < {AWM} = im(WA'y,
where
(3.7) We=CovV+ (tr M)} (Mol),

since (tr ll)'-l MoM is the orthogonal projection onto (A M}. This
is the case iff

(3.8) WM =20% M+ 0%(8-3) M(Diag M) M+M=p N

for some p # 0. This means that o2(B-3) M(Diag M) M=aM for

some o ¢ IR, By taking traces on both sides of the last equation
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a = (tr W)L o¥(8-3) tr(M diag M) = ctr 1)L o*(B-3) treur w).
Since tr(M *M) < tr(M) and 8 > 1 it follows that p =207 +a +
l1>1>0. But by Hsu's theorem (Drygas-Hupet [7], Pukelsheim
{131, Khatri [9])), M diag x M = 0 is equivalent to (M* M)x=0.
This finishes the proof of the theorem since the assertion con-

cerning linear minimal sufficiency is now obvious.

3.2 Theorem. Let M ¥ 0. Then diag "V = (Vyps--+1V,) 15 8

linearly sufficient statistic.

Proof: 1) Since we consider V as an element of H, dia.g* is to
be considered as mapping from H to R®. The adjoint ((diag)* )*
of this mapping is not diag but M diag M, since for Ac¢H

(3.9) tr (M diagxM - A) = tr(diagx+ A) = x' (diag)* A.

and M diagx M eH.
2) Two cases have to be distinguished. Either there is an
element A ¢ H such that (Cov V)A=N or there is an element Ac¢H
such that tr(AM) # O and (Cov V)A=0. (The latter case can only
occur if B=1.) This follows from im(Q) = (Q"1(0))*, if Q is
self-adjoint.

In the first case theorem 1.2 tells us that we can choose
W = Cov V, while in the second case W will be chosen equal to

Cov V + (tr l)'l(lloll). In both cases, however, M ¢ im(W(diag*))*)

has to be proved. Let M = (Cov V)A=o? {2A + (B-3) M Diag AM},
Ac¢H. This implies at first that o‘ can't vanish. Therefore

...........
-------------
........................
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(3.10) A=(20Y)"! M(diag 'In—o4(8—3)diag Diag*A) M = Mdiagx M

ran *~

4.-1 4 * '
with x = (207) (1n - 0 (8-3) Diag A), ln-(ll""’l) . Thus

*_ x *
M = (Cov V) (diag') x and diag is linearly sufficient.

. In the second case (Cov V) A=0, WA = (tr M)"1 tr(MA)M#0,
implying WB = M, B = (tr(lA))-l(tr ¥»M and
2%
a5 4 4 x
. (3.11) (Cov V)B =20~ B+0 (B-3) Mdiag Diag BM=0.
b - *
o Thus if c$0, B = =2 1(8-3) M diag Diag BM=M diagxM, x =
.~ - *
w -2 1(8-3) Diag B. 1f =0, then evidently W(diag*)* 1n =
WMdiag 1n M=M. Therefore linear sufficiency is proved in all
possible cases, Q.E.D.
:3 We will now consider
! (3.11) v, =2 . u® M .34
_: Since Mei z‘i = (llz).1 = o:!i ll.i u.:l we can apply the results
= of paragraph 2 for obtaining expectation and covariance-operator
~ of Vi. First of all, note that V1 is a symmetric tensor obeying
the equation n‘ivi = Vi. Therefore our reference vector-space
": H will be the set of all symmetric tensors a meeting the equation
N u¥ig-a,
z We introduce the following notation: Let a ¢ m“. as ("1’ .o .an) .
n
A Then we define diagl as= (a1 61 1 ...61 {0 11,...,1p-1,2,...,n)
p _ 1 "1°2 ]kp
“' ¢RY, In general if a= (ai i )¢ R® and p >k we define
f; 10 .. k p
(3.12) diag, (a) = (a 8 vl 8 ) ¢ R®
. With these definitions we evidently get from (2.11) and (2.12):
2

........
...........
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(3.13) E(z%) = o®B(udw® qtag, 1, 1 =q1,..., D)

[ 1~ I - ]

(3.14)  E(z®%) =c%u® ((8-3) diag, 1 +3

n I

Tg ii}'

-

=]
The covariance-operator, defined as mappings from H to H, are

found in the quasi-normal case (use l‘ias-a!) to be equal to

3 6 @3 2

(3.15) Cov(z ) = g {61 + 9 M g;l(“SIB()“SIB)}’
94 8 a

(3.16) Cov(z®%) = o®{241 + 72 I“JZk.I'nsIJkonsIJk}.

This model has intensively been studied in Pukelsheim ([(14].

Since the covariénce-operator is only computed under quasi-
normality the estimatorsderived from linear model theory are only
locally best (linear) unbiased estimators. Pukelsheim's inves-
tigation was suggested by a paper by Anscombe [1], who used
diagI z.3==z’.'3 and diagI 2.4 = 2*4 to obtain estimators of

E(ug) and E(ui), respectively. Pukelsheim showed that these es-~

a9 and 2.4, respect-

Fimators are not even locally best. Using z
ively, means the consideration of linear combinations of zinzk
(1,3,k =1,...,n) and of zizjzkz1 (i,j,k,1=1,...,n), respectively.
But we will show now that it is enough to consider only zfzd
(1,J=1,...,n) and zfszk (1,3,k=1;...,n), respectively. Evi-
dently (zfzJ) = diagz(zizjzk) - z"‘2 #z. Similarly, (zfzjzk) -

z'2 082

®z = diags 2.4. We will prove that these statistics are

linearly sufficient.

2 23

3.3 Theorem. a) z @ z‘ = dia¢; z is linearly sufficient in

the model described by (3.13), (3.185).

.
............ .
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‘ *
b) z‘2 e z 2. diag; Zz 1is linearly sufficient in the model des-

cribed by (3.14), (3.16).

proof: a) Since our reference vector-space H is the set of all

e
symmetric tensor a from R meeting I.3 a=a, (diag;)* has to
2
be mapping from R® to H. This mapping is

u.3

(3.17) (diag;)' - n diag,

S

This follows since l‘awsdiagz beH and <ll.31rs diagz b,e> =
2
<diag, b,c> = <b, diag, c> for all be R" , ccH.

We firstly deal with the case 06 = 0. Let M # O, otherwise

there is no assertion. Let W = (l.3d1a¢1 1, o u®3 dtag, 1)
n

) mii )‘1. W is the orthogonal projection onto F ={y u®3
i=]

diagl ln}. Since Cov Vg O and W l. diag, ln : Il. diag, ln
*

u® diag, vec(Il ) = (diag‘) vec(I_ ), (diag,) is clearly

S 2 n n 2
linearly sufficient.

6 6 lna

Now let 0 % O, then Cov Va-o {61 + £...} is regular

or H, since <(Cov Vs)a,v = @6 06 <a,a> + 9 06 2 ({o.i“)2 vanishes
i

iff a=0. For this reason there is a tensor a ¢ H such that

n
) ("SIJ ovrslj)a

(3.18) ¥*3a1ag, 1 =6 o® +9 o8 u®3
J=1

Since W can be chosen equal to Cov Va, our assertion would be

proved if we could show that a has the form I.ansdngzb for some
2 .

beR® . But (3.18) implies that

g D
[-1 <1y,wmgl,}

(3.19) a = (86%)7 W®(d1ag, 1 -9 0
J

- Il'ansdiagz b;
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where b = (bij) and

(3.20) b, = (66515, - 957 a, )
. 13 13 N ERLY

-

b) Again, (dg;)"l = Il“ns dgs can easily be established. Since

-8 2

g <(Cov V,)a,a> = 24<a,a> + 72J 12‘ 1(§a1k11) , acH is positive
whenever a ¥ 0, Cov V‘t is regular and W =Cov V4 is a possible choice,
if 08 # 0 ( 08 =0 can analogously be dealt with as above). There-

fore there is an element a ¢ H such that
(3.21) Wa = WMdiag 1 = 0"(24a+72 ““jqu,jk'”“sljk}
and an element b ¢ H such that

(3.22) wo=u" 7 1 1., =c®(24b+72 b>m I, }
slis

94
M 1
i 3 8" jk

<
T
These two equations can be rewritten as
(3.23) a=(240%7) ¥ (atag) 1 -72 0® § <1, eomgIg)
J.k
= “ ’
fﬂs diagscll,

(3.24) b=(24c%)"1 u“{§ ngl,, =72 osjzkdjk,bnsljk},

-ll‘4 TS diaga Cq»

where
: 8 : 8
(3.25) ¢, = (615611{ - 72¢ a?ﬁ(g I.GBYY))/(240 )
8 8
(3.26) | cy = (61.1 - 720 . g.yaaeyy)/(%o )

This shows that 1m(l(d1a¢;)‘) contains the set of possible expec-

tation-values, Q.E.D.
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